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Abstract 

This paper attempts to build a classification model according to the research products 

created by those institutes and hence to design specific evaluation processes. Several 

scientific input/output indicators belonging to 109 research institutes from the Spanish 

National Research Council (CSIC) were selected. A multidimensional approach was 

proposed to resume these indicators in various components. A clustering analysis was 

used to classify the institutes according to their scores with those components (principal 

component analysis). Moreover, the validity of the a priori classification was tested and 

the most discriminant variables were detected (linear discriminant analysis). Results 

show that there are three types of institutes according to their research outputs: 

Humanistic, Scientific and Technological. It is argue that these differences oblige to 

design more precise assessment exercises which focus on the particular results of each 

type of institute. We conclude that this method permits to build more precise research 

assessment exercises which consider the varied nature of the scientific activity. 
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Introduction 

Research activity is affected by multiple variables that influence the success of their 

results. The disposal of human and economic resources determines the quantity and 

quality of the research products. Moreover, the different types of results (publication, 

patents, thesis, etc.) are examples of different type of researches. Thus, applied sciences 

create patents which contain detailed description of inventions, while the humanities 

need books which permit the expression of textual criticism and speculative and 

discursive reasoning. Disciplines with a rapid obsolescence tend to use fast 

communication media such as the proceeding papers (Line, 1970). This involves 

assessing the scientific research according to multiple output indicators which express 

the different activities of each research discipline (Martin, 1996). 

The assessment exercises are based on a reward system in which the results obtained by 

a research unit are valuated for a research institution through a qualitative (peer review), 

quantitative (scientometric assessment) or mixed approach (Shapira and Kuhlmann, 

2003). However, one of the most important challenges of a research evaluation system 

is to value or quantify the importance of each scientific result in the context of the 

multidisciplinary organizations. In European research councils, such as CNRS, CNR or 

CSIC there are specialized institutes in all spheres of knowledge whose research outputs 

considerably differ one from another.  

We think that before measuring the value of each output, it is necessary to identify the 

research institutes by their common research results, and then to classify them in 

different profiles which allow the application of specific assessment exercises. This 
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paper attempts to build a classification model according to the research products created 

by those institutes and in this way to design specific evaluation processes.  

 

Related Research 

Several papers have addressed the statistical and automatic classification of research 

units (scholars, institutes, universities, etc.) using R&D indicators. One of the first 

works was developed by Giese (1990). He used principal component and discriminant 

analysis to rank German universities according to input indicators (staff, funding). 

Discriminant analysis was also used by Coccia (2004; 2005) to classify research 

institutes in high and low performance. He analysed a set of different indicators such as 

training courses, publications, staff, etc. Ramani (2002) classified the Indian biotech 

firms according to their expenditure, publications, staff and other variables, using 

principal component analysis. Tagarelli et al. (2004) proposed data mining techniques 

for classifying research centres according to their publications, European projects and 

patents. However, their results are more focused on the reliability of the model rather 

than on the validity of the obtained classes. Tikoria et al. (2009) used analytics 

hierarchy process to measure the performance of the R&D organizations in India. 

Other studies have used partial approaches based mainly on bibliometric data in order to 

classify journals (Schubert and Braun, 1996), articles in thematic categories (Glänzel 

and Schubert, 2003), authors by their publications and citations (Zhou et al., 2007; 

Harris and Kaine, 1994), article-related indicators according to the features they 

measure (Bollen et al., 2009), research institutes by their publications (Chen and Liu, 

2006; Thijs and Glänzel, 2008) and to build thematic maps from bibliographic data 

(Polanco et al., 1998). 
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Objectives 

This paper attempts to build a classification model according to the research outputs 

produced by the 109 research institutes of the CSIC and in this way to design specific 

evaluation processes for each group. Methodologically, we intend to answer the 

following questions: 

 

• Is it possible to implement a statistical method in order to classify research 

centres according to R&D indicators?  

• How many classes would be found and according to what? 

• What indicators would characterize those classes?  

 

Methods 

 

Data 

Several indicators were used to characterize each research institute. These data were 

obtained from an internal assessment exercise, which quantitatively measures the 

achievement of research objectives previously defined each year. This study contains 

the accumulated results from 2005 to 2008. We have selected this time period because 

there are fluctuations in the research activity of the institutes each year due to the 

variability of their resources (economic, human, etc.). This process measured the 

research activity of 109 research institutes through 13 indicators grouped in four 

thematic blocks (see Table 1). 
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Blocks Indicator Definition 
Funding Projects Amount of funds obtained 

by their participation in 
competitive research 
projects 

ISI publications Number of papers 
published in journal 
indexed in the ISI-Thomson 
database 

International non-ISI 
publications 

Number of papers 
published in international 
journals which are not 
indexed in the ISI-Thomson 
database. It also includes 
international proceeding 
papers and book chapters  

National non-ISI 
publications 

Number of papers 
published in national 
journals which are not 
indexed in the ISI-Thomson 
database. It also includes 
national proceeding papers 
and book chapters 

Scientific Production 

Books Number of books edited or 
written 

Spin-offs Number of new firms 
established 

Licensed patents Number of licensed patents 
Private R&D contracts Amount of funds obtained 

by private research 
contract with a company or 
private foundation 

Public R&D contracts Amount of funds obtained 
by public research contract 
with an administration or 
public foundation 

International patent 
application 

Number of Patent 
Applications to the 
European Patent Office 
(EPO). World Intellectually 
Property Office (WIPO)and 
to offices of foreign 
countries  

Technological Production 

National patent application Number of Patent 
Application to the Spanish 
Patent Office (OEPM) 

Thesis Number of PhD Thesis 
directed or co-directed by a 
CSIC researcher  

Training 

Curses Number of teaching hours 
in graduate, doctoral and 
specialized courses 

Table 1. Classification and definition of the 13 indicators used in the assessment 

exercise. 
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The number of institutes which participate in the exercise changes each year because 

there are institutes that disappear, merge or start. So, we made a snapshot of the CSIC’s 

institutes in 2005. The Appendix I lists the acronyms of the institutes beside their a 

priori and a posteriori classification, and their membership probability. The name in 

brackets is the former name of the institute in 2005, while split institutes after to 2005 

were merged in their original institute. Due to internal restrictions, we cannot publish 

the full name of the institutes. However, we put in bracket the research issues of those 

institutes.   

The distribution of the research resources (incomes by projects and contracts) and 

results (publications, patents, books, etc.) do not follow a Gaussian distribution but a 

power law (Katz, 1999). Thus, few institutes produce the large majority of the CSIC 

results. This is due to a size effect, in which the largest institutes produce more results 

than de other ones because they also gather more resources. Then we divided their 

outputs by the total number of scientific and technical personnel –it does not include 

administrative staff. These new variables are now Gaussian and they do not show a size 

effect. 

 

Statistics 

Three statistical techniques were used to create a classification method of research 

centres. The Principal Component Analysis was firstly used to extract the principal 

components that resume the information of the 13 indicators. Next, a cluster analysis 

leads to a priori classify the institutes according to their scores in the obtained 

components. Finally, the Linear Discriminant Analysis was used to test the a priori 

classification done by the clustering technique and to identify which variables are the 

most important to differentiate between groups. This procedure was previously used by 
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Giese (1990) and Coccia (2004; 2005), although they do not use the clustering 

technique to previously classify the observations.  

 

Principal Component Analysis 

The Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933) is a 

multivariable technique related with the factor analysis. The aim of the PCA is to reduce 

the dimension of p variables to a set of new variables (principal components) which 

contain the highest amount of information from the previous variables. It is desirable 

that all variables are well correlated between them, because this is symptomatic of 

redundant information and therefore a lower number of new variables (components) 

will be necessary to explain the model. These components are uncorrelated between 

them, because the fist one has the highest amount of information, the second one has the 

information that the previous does not contain and so on.  

These components are interpreted according to their correlation with the previous 

variables, because they contain part of the information of the original variables. Thus, 

these components allow us to plot the observations in a new reduced space and to see 

how the variables are related with the institutes. To simplify the component structure 

and therefore to make its interpretation easier and more reliable, it is usual to apply 

rotations to the components, Varimax, which was developed by Kaiser (1958), is the 

most popular rotation method; because it makes that each component represents only a 

small number of variables. 

 

Agglomerative Hierarchical Clustering 

The Agglomerative Hierarchical Clustering (AHC) (Sneath and Sokal, 1973) is a 

method of cluster analysis which intents to build a hierarchy of groups. The 
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agglomerative one starts with a similarity matrix in which each element shows a 

similarity degree regarding the other ones. Then a linkage method is successively 

jointing elements, creating a bunch of clusters called Dendrogram. A cut-off point is 

selected to identify the most important clusters from the tree plot. 

 

Linear Discriminant Analysis 

The Linear Discriminant Analysis (LDA) (Fisher, 1936) is a statistical method that 

comes from the multiple regression analysis and its principal objective is to obtain 

several classification functions that classify an observation in a set. The LDA starts 

from a set of continuous variables, which are grouped according to a categorical 

variable (the classification criterion). It selects the variables that more clearly separate 

those groups and creates several linear classification functions that reclassify the 

observations. The method compares the new classification with the previous one as a 

way to test the model. Finally, the LDA enable us to assign new observations to the 

groups through the classification functions. 

 

Software 

We used several statistical software packages to develop different statistical methods 

and to obtain several graphical outputs. SPSS 17 was used to calculate the LDA, while 

XLStat 2008 was used to calculate the PCA. XLStat was mainly used due to its 

graphical outputs, much better than the SPSS ones. SPSS was used to develop calculi 

not included in the XLStat 2008 software, i. e. the insertion method in the LDA. XLStat 

was also used to calculate the clustering analysis and to visualize the tree plot. 
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Results 

 

Principal Component Analysis  

As we said before, PCA was firstly used to extract the principal components and to a 

priori classify the institutes according to their scores in those components. Three 

components were obtained with a variance of 30.67% to the first one, 27.08% to the 

second one and 13.24% to the third one, being a cumulate variance of 70.99%. Public 

R&D Contracts and Spin-offs variables were rejected from the model due to their low 

correlation with the three first components. They highly correlated with the F4 and F5, 

respectively. However, to also consider these factors would produce an excessively 

complex model. 

 

Variables  
F1 

(Technological)
F2 

(Humanistic)
F3 

(Scientific) 
Licensed patents .757 .030 -.369 
Private R&D contracts .653 .234 -.173 
Inter. patent applications .880 .081 -.239 
Nat. patent applications .877 .111 -.188 
Inter. Non-ISI publications .306 .718 -.078 
Nat. Non-ISI publications -.181 .908 .124 
Books -.328 .848 -.079 
Thesis .231 .590 .509 
Courses -.247 .691 -.143 
Projects .539 -.139 .562 
ISI publications .438 -.026 .758 

Table 2. Correlation between variables and components (in bold r>.55) 

 

Table 2 shows the Pearson’s correlation between the variables and the obtained 

principal components. These correlations allow the interpretation of the meaning of 

each component according to their relationship with the original variables. Thus, the 

first component (F1) correlates with Licensed patents, Private R&D contracts, 

International patent applications and National patent applications. These variables are 
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related with the technology transfer, so we tagged this component as “Technological”. 

The second one (F2) is correlated with International no-ISI publications, National no-

ISI publications, Book, Thesis and Courses. This component was defined as 

“Humanistic” because the no-ISI publications (book chapters, conference papers) and 

books are common outputs of the Humanities. Finally, the third component (F3) 

correlates with Projects and ISI publications, so we decided to name this component 

“Scientific” because both indicators are characteristic of the hard sciences. 

 

 

Figure 1. PCA map with the two main components, variables and observations. 

Variance (57.75%) with Varimax rotation 

  

Figure 1 shows the bi-dimensional projection of the variables (lines) and observations 

(dots) according to the two principal components. Unfortunately, XLStat does not 

generate 3D plots, so we can only represent the first two components, the 
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“Technological” and the “Humanistic” ones. The colours represent the Scientific and 

Technical Area of each institute –the CSIC’s institutes are organized in eight Scientific 

and Technical Areas–, while the size is proportional to their scientific staff. Two 

institutes were removed from the graph because their scores were very high and they 

were located too far away. These institutes are the IAI (Industrial Automation) with 

respect to the horizontal axe and the IHCD (History of Science and Information 

Sciences) with respect to the vertical one. 

Figure 1 lets us to appreciate how the research institutes from the Social Sciences and 

Humanities Area (blue) are displayed vertically along the “Humanistic” component, 

showing positive scores with that axis. These “Humanistic” institutes focus their 

activity on publishing books and non-ISI papers and teaching courses. The institutes 

with the largest scores in that component are the IHCD and the IH (History). The 

horizontal axis represents the “Technological” component. Institutes with positive 

scores in that axis are institutes with a strong technological activity such as obtaining 

private research contracts and patenting new inventions. For instance, the 

abovementioned IAI and the CNB (Biotechnology) are the institutes with the highest 

scores in that axis. 

The picture also shows how the different S&T Areas are related with the components. 

We have already seen that all the institutes of the Social Sciences and Humanities Area 

have positive scores with the second component, with the exception of the IEDCYT 

(Information Science). Notice the high “humanistic” profile of the IGE (Geology) 

despite the fact that it belongs to the Natural Resources Area. We also observe that the 

great majority of the Biology and Biomedicine institutes have negative scores in both 

components, whereas they show high positive scores in the “Scientific” component. The 

only exception is the CNB which has an important technological profile. Finally, it is 
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interesting to note that all the institutes of the Food Science and Technology Area are 

positively located on the “Technological” axe. 

 

Agglomerative Hierarchical Clustering 

Once obtained the principal components and named them according to their 

correlations, each institute was a priori classified through the AHC. This mix procedure 

is widely used in different disciplines such as Chemistry (Michel and Jeandenans, 

1993), Computing (Lin et al., 2007) and Medicine (Modlin et al., 2009). A similarity 

matrix was built from the scores of each institute in the PCA. This lets us to group 

institutes that are closer to a component or other one. Cosine similarity measure was 

used because it is sounder to non-parametric variables. The linkage method used was 

the Average Linkage. This method is computed as the average distance between objects 

from the first cluster and objects from the second cluster. The resulting dendrogram 

(Figure 2) shows three defined groups that fit with the three PCA components. The 

truncation was automatically set-up by the statistical software which shows a high cut-

off (similarity>0.25) and the identified clusters show solid differences. Although the 

dendogram shows more sets at a higher level, these are not differentiated by the LDA 

because the proportion of misclassified increases and it does not found discriminant 

variables (Martinez and Kak, 2001). This is because some of these groups are set up by 

multiples fuzzy characteristics that the LDA does not achieve to differentiate. Thus, the 

institutes in the green cluster are observations that have high scores with the 

“Technological” component, while the institutes of the pink cluster are related to the 

“Scientific” one and the brown set with the “Humanistic” one. This allows us to class a 

priori each institute in one of the three groups (Technological, Scientific and 

Humanistic). 
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Figure 2. Dendrogram from the Hierarchical Clustering Analysis (HCA). Similarity: 

cosine; Method: Average link 

  

Linear Discriminant Analysis 

Next, we used the LDA to test the a priori classification, to observe the most 

discriminant variables and to obtain the discriminate functions as well. Since there are 

three groups to test, the model found two discriminant functions to separate the groups. 

We have used a stepwise discriminant method to select only those variables that have 

discriminant power, rejecting the redundant variables or with a low discriminant factor. 

The Wilks’ Lambda method was used because is the most extended and it minimizes 

the Wilks’ Lambda value. This is because the lower is this value the higher is the 

discriminant power of the functions. We have used a restrictive model in order to only 
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select the most discriminant variables. Thus, we have reduced the significance at the p-

value=.01. 

 

Function 
 1 2

ISI publications .631 .622
Inter. non-ISI publications -.474 .418
Books -.483 .502
Nat. patent applications .693 .228

 Table 3. Coefficients of the discriminant functions (standardized) 

 

Table 3 shows the two functions and their coefficients. The stepwise method detected 

only four variables with the highest discriminant ability. Those variables are ISI 

publications, International non-ISI publications, Books and National patent 

applications. The first function distinguishes between Humanistic and non-Humanistic 

institutes because the humanistic variables (International non-ISI publications and 

Books) have negative coefficients. While, the second one separates the Scientific and 

Technological institutes because the National patent applications coefficient is the 

lowest and the ISI publications coefficient is the largest positive one. The Wilks’ 

Lambda value of the first function (λ=.199) is rather low, so the differences between the 

Humanistic and non-Humanistic institutes are strong. However the second one (λ=.569) 

is larger, causing less clear differences between the Scientific and Technological 

groups. 

 

 Predicted Group Membership 
Class code Humanistic Scientific Technological Total 
Humanistic 16 4 0 20 
Scientific 0 41 5 46 
Technological 0 4 39 43 
Total 16 49 44 109 

Table 4. Reclassification of the institutes according to the discriminant functions 
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Table 4 shows the predicted classification from the a priori one. The LDA found that 

the 86.2% of cross-validated grouped cases are correctly classified. This lets us to 

validate the model because the ratio of classification is rather high. “Technological” was 

the group with most cases correctly classified (90.7%), while the “Humanistic” group 

has the lowest percentage of correctly classified cases (70%). 

 

Figure 3. Plot of the research institutes according to the LDA classification 

 

 Humanities Scientific Technological Total 
 institutes % institutes % institutes %  
Social Sciences and Humanities 12 70.6 5 29.4 0  17
Biology and Biomedicine 0 17 94.4 1 5.6 18
Natural Resources 1 5 11 55.0 8 40 20
Agricultural Sciences 0 5 55.6 4 44.4 9
Physical Science and Technologies 1 5.3 7 36.8 11 57.9 19
Chemical Science and Technologies 0 4 40 6 60.0 10
Materials Science and Technology 0 2 22.2 7 77.8 9
Food Science and Technology 0 0 7 100 7
Total 14 12.8 51 46.8 44 40.4 109

 Table 5. Percentage of classified institutes by Scientific and Technical Areas 
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Figure 3 shows the graphical representation of the three groups detected by the LDA 

and the a posteriori classification of the research institutes. Table 5 shows the 

percentage of research institutes in each class by S&T Areas. A large percentage of 

Social Sciences and Humanities institutes are located in the “Humanistic” class 

(70.6%), while the remaining 29.4% are located in the “Scientific” group. These five 

institutes work in Economics and Information Science which are research areas closer to 

the “Scientific” pattern than to the “Humanistic” one because they produce a large 

proportion of ISI publications. The Areas with the highest proportion of “Scientific” 

institutes are Biology and Biomedicine (94.4%) and Agricultural Sciences (55.6%), 

while the largest number of “Technological” institutes come from Food Science (100%) 

and Materials Science and Technology (77.8%). We also observe that there are Areas 

that share out their institutes between “Scientific” and “Technological” groups. This is 

the case of Agricultural Sciences (55.6%; 44.4%), Chemical Science and Technologies 

(40%; 60%) and Natural Resources (55%; 40%). It is interesting to notice that the 5.3% 

of Physical Science and Technologies institutes (1 institute) is classified as 

“Humanistic”. This is an astrophysical observatory which has an above average of non-

ISI publications, mainly articles published in their own journal.  

 

Discussion 

The main objective of this work is to present a statistical classification method which 

allows to describe the principal features of the research institutes and to group them in 

solid sets. The obtained results reinforce the suitability of the method because it detects 

three differentiated classes: Humanistic, Scientific and Technological. These groups 

were corroborated by the PCA, founding three components; by the AHC, showing three 

sets from those components; and by the LDA, testing those groups with an 86% of 

 16



correct classified and founding their respective discriminant functions. It is interesting 

to note that these institutes are classified in those classes according to their scientific 

outputs, while their inputs do not make possible to differentiate them. This allows us to 

argue that these institutes may share the same type of funding (projects, public or 

private contracts, etc.), but they produce differentiated products. Although the PCA and 

LDA have been profusely used in Scientometrics (Giese, 1990; Coccia, 2004; 2005), 

they were used to rank research units detecting groups of high or low performance. 

However, this work does not expect to present a new ranking method but to evidence 

that there are research institutes which produce different outputs and then they cannot 

be compared or ranked together. They have to be assessed in a separated way, according 

to their research outputs and their particular research performance. Moreover, we 

consider that some research rankings make mistake comparing research units without 

distinguish between technological institutions oriented to patent production or 

humanistic institutions centred in book edition. Furthermore, these rankings are just 

based on bibliographical databases (Thomson-ISI, Scopus) which use indicators related 

to a unique scientific result: research articles. We think that to base the research 

assessment on only published papers could show an unrealistic view of such complex 

activity (Van Raan, 2005).  

This argument fits with Martin (1996) who defends that the research evaluation must be 

done from a multidimensional scope which assesses the multiple results that the 

research activity is able to produce. Thus, if we just consider ISI publications as only 

indicator, the best valued institutes are those that only publish ISI papers, while 

institutes focused on patenting or publishing books are underestimated. For instance, 

this is the case of the ITQ, a prestigious chemical institute which licenses the 18.5% of 

the CSIC’s patents, but it only contributes the .9% of the ISI papers; or the case of the 
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IH with the 10.1% of books but a .3% of ISI publications. These examples show that the 

bibliometric indicators are good if they describe research areas where the scientific 

publication is the principal output of their activity (Giese, 1990), but in areas where the 

publications are in no way the only product of research, bibliometric indicators have to 

be carefully used (Skoie, 1999). Our results allow us to claim that those indicators can 

only be used in evaluation processes if they come with other non Thomson-ISI or 

Scopus based indicators such as published books and applied, licensed or granted 

patents. 

Results allow us to improve our evaluation exercise as well: 

• Defining three types of evaluation models for each group of institutes. 

• Distinguishing between proceeding papers and other non-ISI publications, 

avoiding the misclassification of the Computing institutes in “Humanistic” 

institutes 

• Putting more attention on the output indicators than the input ones. 

 

Conclusions 

The obtained results enable us to claim that the principal component analysis is a 

suitable tool to reduce R&D activity indicators to different components and the 

agglomerative hierarchical clustering a reliable classification method of observations 

according to the principal components. We can also state that the discriminant analysis 

has been a proper method to validate the a priori classification and to identify the most 

discriminant variables that make possible to classify the research institutes. These 

statistics allow us to build a robust methodology to characterize research units 

according to their research inputs/outputs. Regardless of the results, the principal 

advantage of this method is that does not allow to classify research institutes but also 
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other research elements such as researchers, organizations and countries, being an 

important tool to the improvement of research units assessment. 

Three classes of research institutes have been found: Humanistic, Scientific and 

Technological. These classes are defined from the characteristic research products of 

each institute. Thus, a “Scientific” institute is one which mainly publishes ISI papers, a 

“Humanistic” is one that mainly publishes books and non-ISI publications and the 

“Technological” ones are those which produce patent applications. Obviously, the 

importance of these results are not that certain institutes produce particular outputs but 

that this method has identified three classes and hence makes possible to design 

different evaluation models focused on their principal research outputs. We conclude 

that this method permits to build more precise research assessment exercises which 

consider the varied nature of the scientific activity. 
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Appendix 1. Institutes name and acronym, a priori and a posteriori classification and 

membership probabilities. 

Observation A priori A posteriori Pr(Human.) Pr(Scient.) Pr(Tech.) 
CAB Scientific Scientific 0.009 0.884 0.106 

CABD Scientific Scientific 0.003 0.987 0.011 
CBMSO Scientific Scientific 0.001 0.946 0.053 
CEAB Scientific Technological 0.000 0.156 0.844 

CEBAS Technological Technological 0.001 0.455 0.544 
CENIM Technological Technological 0.000 0.005 0.995 
CFM Scientific Technological 0.001 0.459 0.540 
CIB Scientific Scientific 0.002 0.913 0.085 
CIC Scientific Scientific 0.006 0.986 0.008 

CIDE Scientific Scientific 0.014 0.909 0.077 
IEDCYT (CINDOC) Scientific Scientific 0.045 0.937 0.018 

CNB Technological Technological 0.000 0.202 0.798 
CNM-IMB Technological Technological 0.000 0.045 0.955 
CNM-IMM Technological Technological 0.000 0.108 0.892 
CNM-IMS Scientific Scientific 0.391 0.602 0.007 

EAE Scientific Scientific 0.004 0.979 0.017 
EBD Technological Technological 0.000 0.079 0.920 
EEA Humanistic Humanistic 0.970 0.030 0.000 

EEAD Scientific Scientific 0.004 0.818 0.178 
EEHA Humanistic Humanistic 0.996 0.004 0.000 
EELM Scientific Scientific 0.006 0.985 0.009 
EEZ Technological Scientific 0.015 0.814 0.172 

EEZA Scientific Scientific 0.003 0.560 0.437 
IA Technological Technological 0.013 0.289 0.698 

IAA Technological Technological 0.030 0.206 0.764 
IAE Humanistic Scientific 0.011 0.951 0.037 
IAG Scientific Scientific 0.011 0.983 0.006 
IAI Technological Technological 0.000 0.000 1.000 
IAM Scientific Scientific 0.285 0.712 0.003 
IAS Technological Technological 0.001 0.235 0.765 

IATA Technological Technological 0.001 0.097 0.902 
IACT Scientific Scientific 0.014 0.862 0.124 
IATS Technological Technological 0.000 0.273 0.727 
IBB Scientific Scientific 0.004 0.919 0.077 

IBGM Scientific Scientific 0.002 0.978 0.020 
IBMB Scientific Scientific 0.001 0.945 0.053 

IBMCC Scientific Scientific 0.002 0.912 0.086 
IBMCP Scientific Scientific 0.001 0.876 0.124 

IBV Scientific Scientific 0.002 0.855 0.143 
IBVF Scientific Scientific 0.003 0.975 0.022 

IC Scientific Scientific 0.002 0.881 0.116 
ICA Technological Technological 0.003 0.347 0.651 
ICB Technological Technological 0.000 0.193 0.807 
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ICE Technological Technological 0.001 0.011 0.988 
ICM Scientific Technological 0.001 0.445 0.554 

ICMA Scientific Scientific 0.001 0.558 0.442 
ICMAB Technological Technological 0.000 0.017 0.983 
ICMAN Technological Technological 0.000 0.107 0.892 
ICMM Technological Technological 0.000 0.014 0.986 
ICMS Scientific Technological 0.000 0.492 0.507 
ICP Technological Technological 0.000 0.035 0.965 

ICTJA Technological Technological 0.001 0.029 0.970 
ICTP Technological Technological 0.001 0.217 0.782 
ICV Technological Technological 0.000 0.171 0.829 

IDAB Scientific Scientific 0.000 0.883 0.117 
IEGD (IEG) Scientific Scientific 0.391 0.605 0.004 

IEGPS Humanistic Humanistic 0.801 0.198 0.001 
IEIOP Humanistic Humanistic 0.997 0.003 0.000 
IEM Technological Technological 0.000 0.034 0.966 

IESAA Humanistic Humanistic 0.991 0.008 0.000 
IETCC Technological Scientific 0.032 0.832 0.136 

IF Technological Technological 0.000 0.111 0.889 
IFA Technological Technological 0.346 0.196 0.457 

IFCA Technological Technological 0.000 0.067 0.932 
IFI Technological Technological 0.000 0.061 0.939 

IFIC Technological Technological 0.001 0.037 0.962 
ILC (IFL) Humanistic Humanistic 0.985 0.015 0.000 

IFS Humanistic Humanistic 1.000 0.000 0.000 
IFTE Scientific Scientific 0.002 0.890 0.108 

IG Technological Technological 0.000 0.115 0.885 
IGE Humanistic Humanistic 0.944 0.006 0.050 
IH Humanistic Humanistic 0.973 0.027 0.001 

IHCD Humanistic Humanistic 1.000 0.000 0.000 
IIAG Scientific Scientific 0.023 0.897 0.081 
IIBB Scientific Scientific 0.003 0.935 0.062 
IIBM Scientific Scientific 0.001 0.887 0.112 
IIIA Technological Scientific 0.367 0.587 0.046 
IIM Technological Technological 0.003 0.371 0.626 
IIQ Technological Scientific 0.000 0.604 0.396 

IIQAB Scientific Scientific 0.001 0.710 0.289 
IIRI Scientific Scientific 0.073 0.916 0.011 

ILLA (ILE) Humanistic Humanistic 1.000 0.000 0.000 
IMAFF Scientific Scientific 0.005 0.839 0.156 

IMB Scientific Scientific 0.003 0.986 0.011 
IMEDEA Scientific Scientific 0.003 0.504 0.494 

IMF Humanistic Humanistic 0.985 0.015 0.000 
IN Scientific Scientific 0.002 0.976 0.022 

INCAR Technological Technological 0.001 0.132 0.866 
INGENIO Humanistic Scientific 0.059 0.923 0.018 

IO Technological Technological 0.000 0.004 0.996 
IPBLN Scientific Scientific 0.001 0.766 0.233 

IPE Humanistic Scientific 0.056 0.606 0.337 
IPLA Technological Technological 0.000 0.215 0.784 
IPNA Scientific Scientific 0.001 0.908 0.091 
IQFR Scientific Scientific 0.001 0.559 0.441 
IQM Technological Technological 0.000 0.020 0.980 

IQOG Technological Technological 0.000 0.095 0.905 
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IREC Scientific Technological 0.002 0.464 0.534 
IRN Humanistic Scientific 0.023 0.561 0.415 

IRNAS Technological Technological 0.000 0.190 0.809 
IRNASA Humanistic Scientific 0.238 0.557 0.205 

ITQ Technological Technological 0.000 0.026 0.974 
LITEC Scientific Scientific 0.003 0.987 0.010 
MBG Technological Technological 0.000 0.069 0.931 

MNCN Technological Technological 0.000 0.003 0.997 
OE Humanistic Humanistic 0.993 0.005 0.002 
RJB Humanistic Scientific 0.366 0.385 0.249 
UBF Scientific Scientific 0.002 0.978 0.020 

IPP (UPC) Humanistic Humanistic 0.886 0.112 0.001 
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